A neural network based computational model to predict the output power of different types of photovoltaic cells
نویسندگان
چکیده
In this article, we introduced an artificial neural network (ANN) based computational model to predict the output power of three types of photovoltaic cells, mono-crystalline (mono-), multi-crystalline (multi-), and amorphous (amor-) crystalline. The prediction results are very close to the experimental data, and were also influenced by numbers of hidden neurons. The order of the solar generation power output influenced by the external conditions from smallest to biggest is: multi-, mono-, and amor- crystalline silicon cells. In addition, the dependences of power prediction on the number of hidden neurons were studied. For multi- and amorphous crystalline cell, three or four hidden layer units resulted in the high correlation coefficient and low MSEs. For mono-crystalline cell, the best results were achieved at the hidden layer unit of 8.
منابع مشابه
Maximum Power Point Tracking of the Photovoltaic System Based on Adaptive Fuzzy-Neural Method
The aim of this paper was to present an optimized method in order to use maximum capacity of the photovoltaic panels. In this regard, we presented a method for the maximum power point tracking in the photovoltaic systems by using the neural networks and adaptive controller. In the proposed system, we estimated an error by using neural network. If this error is lower than the allowable systems e...
متن کاملInterval-based Solar PV Power Forecasting Using MLP-NSGAII in Niroo Research Institute of Iran
This research aims to predict PV output power by using different neuro-evolutionary methods. The proposed approach was evaluated by a data set, which was collected at 5-minute intervals in the photovoltaic laboratory of Niroo Research Institute of Iran (Tehran). The data has been divided into three intervals based on the amount of solar irradiation, and different neural networks were used for p...
متن کاملEstimating Efficiency of Monocrystalline and Polycrystalline Photovoltaic Panels Using Neural Network Models
The energy production analysis of a photovoltaic system depends on the panels tempreture and solar radiation. An endless and free source of solar energy received at the Earth's surface depends on the geographical location, different hours of day and seasons of the year.Hence, its correct evaluation is a strategic factor for the feasibility of a solar system. in this paper, a new method of ener...
متن کاملFuel Cell Voltage Control for Load Variations Using Neural Networks
In the near future the use of distributed generation systems will play a big role in the production ofelectrical energy. One of the most common types of DG technologies , fuel cells , which can be connectedto the national grid by power electronic converters or work alone Studies the dynamic behavior andstability of the power grid is of crucial importance. These studies need to know the exact mo...
متن کاملArtificial neural network model to predict the performance of a diesel power generator fueled with biodiesel
Alternative fuels are intensively investigated for the replacement of the diesel fuel. Today the diesel power generators are mostly used in the various industrial companies in Iran. Therefore, it is necessary to estimate the level of performance of the diesel power generators fueled with biofuels. For the first time, in this study, the prediction of the performance of a diesel power generator m...
متن کامل